QObject Life-Cycle

things learned when implementing
a general purpose QtContacts engine

Mathias Hasselmann - Openismus

Introduction

* Working on gtcontacts-tracker since Feb. 2010

* First serious Qt project for me,
but strong GNOME background.

» The life cycle 1ssues hits us badly...
» Surprised to see such issues in Qt...
* Seems everyone knows the problems...

...50 maybe time to finally address them with Qt5?

<r

Smart Pointers vs. Threads

if (ptr.isNull()) {
ptr->doSomeThing();

J

Smart Pointers vs. Threads

QMutexLocker locker(&mutex);

if (not ptr.isNull()) {
ptr->doSomeThing();

Smart Pointers vs. Threads

QMutexLocker locker(&mutex);

{
if (not ptr.isNull()) {

ptr->doSomeThing();

J

...how to force API users to lock that mutex before

causing object destruction? I

QSharedPointer failing

* QSharedPointer<Foo>(...)->start();
* Foo::start() { engine()->start(this); }
* Engine::start(Foo *req)

{
register(QSharedPointer<Foo>(req)); // autsch!

<r

Things that ~QObject() breaks

QObject::~QObject()
{

QObjectPrivate::clearGuards(this);

if (d->sharedRefcount) { ... }

Things that ~QObject() breaks

emit destroyed(this);

QAbstractDeclarativeData::destroyed()

// disconnect all receivers

Things that ~QObject() breaks

// unregister pending timers

d->deleteChildren();

Things that ~QObject() breaks

 Summary: Every single life-cycle mechanism™)

only kicks in, when the affected object 1s reduced
to a plain QObject and any subclass aspect has
been removed already!!!

» Implication: Relying on Qt4 object management
causes memory corruption, crashes.

) QPointer, QSharedPointer, QWeakPointer,
QML, signals, parent ownership, ...

<r

Our Hackish Workarounds

QContactFetchRequest::~QContactFetchRequest()
{

engine->destroyNotity(this);

Our Hackish Workarounds

QctEngine::requestDestroyed(... *request)

{
QMutexLocker 1(d->m_requestLifeGuard);

<r

Our Hackish Workarounds

QctRequestLocker QctEngine::request(... *worker)
{

return QctRequestLocker

(m_requests.value(worker),

QMutexLocker(&d->m_requestLifeGuard));

<r

Our Hackish Workarounds

vold QctSomeWorker::run()

{

engine()->updateStatus

(ugly_casts<>(engine()->request(this)), ...)

<r

An IMHO Nicer Solution

void QObject::unref()

{
if (not d->refCount.unref()) {

emit disposing();

dispose(); // maybe also use signal to cleanup

<r

} /[from proper thread...

Session Conclusions

 1deally QObject should have two-phase
construction and destruction, but it 1s
cumbersome to implement in C++:

e wrapper objects break polymorphism

 explicit construction, reference and unref methods
radially break Qt API and C++ paradigms (stack
allocation, delete keyword, ...)

* language support would be needed, but unrealistic 1n

QtS time timescale

Session Conclusions

* Thiago will finish explicit QObject support in
QWeakPointer::toStrongRef() - ABI constraints
stopped that effort in Qt4

» provide mixin 1n spirit of QSharedData to properly
support toStrongRef() for abritary objects

* maybe provide something like QctRequestLocker to

keep objects fully alive in threaded context

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17

