
Mathias Hasselmann, Openismus

They call us crazy,
but we store Contacts in Tracker

What is this about?

- QtContacts – easy to use, cross-platform address book API,
Nokia uses it on Symbian and Harmattan

- Tracker – GNOME's version of a RDF tuple store

“Semantic Desktop”

Traditional Desktop

Lots of interesting and useful information
spread over many detached data sources.

Not accessible.

Miners and Harvesters

Aggregation: Many independent data stores.
Harvesters monitor them and update an additional database.

Miners and Harvesters

Positive
- no changes to existing applications

Negative
- waste of CPU cycles, I/O cycles, and memory

- code duplication, unreliable miners
- latency and other synchronization issues

- only few applications actually use the collected data

Perception
“Beagle, Tracker, Zeitgeist, … are useless bloat”

Semantic Desktop

How about applications putting (relevant) information
into one semantic data store?

Semantic Desktop

Negative
- applications must be changed

Positive
- lower resource usage

- less code duplication, perfect meta data
- minimal latency, no synchronization issues

- perfectly integrated applications

Perception
“This is awesome” - hopefully

TrackerQtContacts

sync daemon

Google

Exchange

contactsd

Telepathy

CalendarBluetooth

RDF, Sparql

- Well defined, interoperable standards.

- It is science! Very smart people research it!

- Countless papers about properties, limitations, algorithms.

vs.

random, ad-hoc, NIH solution

RDF Data Model

subject predicate object .

e.g. <nco:default-contact-me> a nco:PersonContact

- resources identified by IRI
- classes organized in ontologies

- predicates and ranges defined by classes
- multi inheritance

RDF Contacts

- NEPOMUK ontology (with a few “bug fixes”)

<urn:uuid:1234...> a nco:PersonContact ;
 nco:nameGiven “Hans” ;
 nco:nameFamily “Zwergl” ;
 nco:hasAffiliation <urn:uuid:50da...> ;
 nco:websiteUrl <http://zwer.gl/> .

<urn:uuid:50da...> a nco:Affiliation ; rdfs:label “Home” ;
 nco:hasPhoneNumber <urn:x-maemo-phone:...> .

<urn:x-maemo-phone:...> a nco:CellPhoneNumber ;
 nco:phoneNumber “+49-172-55443322” ;
 maemo:localPhoneNumber “55443322” .

http://zwer.gl/

Sparql Queries

- SPARQL Algebra – quite similar to relational algebra
- projections, restrictions, filters

SELECT
 ?contact nco:phoneNumber(?tel)

WHERE {
 ?contact a nco:PersonContact .
 ?contact nco:hasAffiliation [nco:hasPhoneNumber ?tel] .

 FILTER(fn:ends-with(maemo:localPhoneNumber(?tel), “334455”)) .
}

Sparql Updates

- INSERT and DELETE, no update statement
(well, tracker has INSERT OR REPLACE)

DELETE {
 ?contact nco:hasAffiliation ?affiliation
} WHERE {
 ?affiliation rdfs:label “Work”
}

INSERT {
 _:contact a nco:PersonContact ;
 nco:birthDate “1990-01-01”^xsd:date ;
 nco:fullname “Example Contact” .
}

QtContacts API

- make the common use cases trivial,
no point in learning SPARQL for them

- based on careful evaluation of libebook
- asynchronous and synchronous API, notifications

- contact manager and action plugins
- contacts organized as collection of details

- details described by POD classes and schema
- detail linking to mark (e.g origin of presence or avatars)

- trivial to add new details and detail actions
- contact filters, fetch hints

- partial contact saving
- contact relationships

Presence

- nco:hasIMAddress, nco:imPresence, nco:imCapability, …
- contactsd plugin mirrors presence status from Telepathy to tracker

Advantages
- we can have queries on presence status

- no additional step to apply presence status to contacts
- applications only wake up from contact changes,

not on each Telepathy change

Problems
- with direct tracker access we lost transient property support,

presence data is written do disk – very bad!

Merging, Unmerging
INSERT {
 _:contact a nco:PersonContact .

 GRAPH <first-origin> {
 _:contact nco:hasEmailAddress <...> .
 _:contact nco:hasPostalAddress <...> .
 }

 GRAPH <second-origin> {
 _:contact nco:hasIMAddress <...> .
 }
}

SELECT ?g ?p ?v {
 GRAPH ?g { <contact> ?p ?v }
}

Phone number IRIs

Wanted
- content based IRIs for fast lookup, to avoid duplications

Problem
- on sync different variants of same contact with varying quality

- can't just store the “best” variant, since the origin might not support all
details and such → sync, resync problems

- a data store shall store what you throw at it and not be too smart

urn:x-maemo-phone:voice,cell:+49-172-55443322

Scalar Selects

SELECT … WHERE { … OPTIONAL {
 ?contact nco:hasPostalAddress …
} }

→ left join in sqlite, horrible performance

SELECT ?contact
 (SELECT fn:concat(nco:streetAddress(?a), '\x1f',
 nco:postalCode(?a), …)
 ?contact nco:hasPostalAddress …)
WHERE {
}

→ scalar select in sqlite, awesome performance

Garbage Collection

- when updating or deleting contacts resource links get removed
for performance, mainly nco:hasAffiliation

- leaves abandoned resources, wastes disk space, pollutes indexes,
degrades performance

garbage collection plugin in contactsd:
- register a named GC query and increase its weight with each update
- upon weight threshold or timeout (often expensive) GC query is run

Links

https://gitorious.org/qtcontacts-tracker
https://gitorious.org/cubi

https://maemo.gitorious.org/maemo-af/qsparql
http://doc.qt.nokia.com/qtmobility-1.2/contacts.html

http://www.w3.org/RDF/
http://www.w3.org/TR/sparql11-query/

http://www.w3.org/TR/sparql11-update/

http://developer.gnome.org/ontology/unstable/

https://gitorious.org/qtcontacts-tracker
https://gitorious.org/cubi
https://maemo.gitorious.org/maemo-af/qsparql
http://doc.qt.nokia.com/qtmobility-1.2/contacts.html
http://www.w3.org/RDF/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-update/
http://developer.gnome.org/ontology/unstable/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20

